VLSI Costs of Arithmetic Parallelism: A Residue Reverse Conversion Perspectiv
نویسندگان
چکیده
This paper reports how VLSI cost metrics (area, delay, power) of residue reverse converters scale with the cardinality and dynamic range of moduli sets. The study uses CMAC reverse converters, reported previously by the authors to be the most efficient known to date in terms of area and delay. In all, 134 reverse converters with dynamic ranges from 32 to 120 bits and set cardinalities ranging from 4 to 20 are actually constructed and analyzed. It is seen that area, delay and power costs are cardinality insensitive once the cardinality exceeds a threshold (usually between five to eight). For cardinalities beyond this threshold, conversion costs are essentially dynamic range dependent. This insensitivity is explained in detail by noting the counterbalancing effects of the various sub-units of a CMAC reverse converter. Since practical implementations of RNS usually employ cardinalities beyond the abovementioned thresholds, the significance of this study is its conclusion that increasing the set cardinality in most implementations will have a marginal, if any, effect on VLSI reverse conversion costs.
منابع مشابه
VLSI Costs of Arithmetic Parallelism: A Residue Reverse Conversion Perspective
This paper reports how VLSI cost metrics (area, delay, power) of residue reverse converters scale with the cardinality and dynamic range of moduli sets. The study uses CMAC reverse converters, reported previously by the authors to be the most efficient known to date in terms of area and delay. In all, 134 reverse converters with dynamic ranges from 32 to 120 bits and set cardinalities ranging f...
متن کاملLow Complexity Converter for the Moduli Set {2^n+1,2^n-1,2^n} in Two-Part Residue Number System
Residue Number System is a kind of numerical systems that uses the remainder of division in several different moduli. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers will increase the speed of the arithmetic operations in this system. However, the main factor that affects performance of system is hardware complexity of reverse converter. Reverse co...
متن کاملEfficient Reverse Converter for Three Modules Set {2^n-1,2^(n+1)-1,2^n} in Multi-Part RNS
Residue Number System is a numerical system which arithmetic operations are performed parallelly. One of the main factors that affects the system’s performance is the complexity of reverse converter. It should be noted that the complexity of this part should not affect the earned speed of parallelly performed arithmetic unit. Therefore in this paper a high speed converter for moduli set {2n-1, ...
متن کاملEfficient Reverse Converter for Three Modules Set {2^n-1,2^(n+1)-1,2^n} in Multi-Part RNS
Residue Number System is a numerical system which arithmetic operations are performed parallelly. One of the main factors that affects the system’s performance is the complexity of reverse converter. It should be noted that the complexity of this part should not affect the earned speed of parallelly performed arithmetic unit. Therefore in this paper a high speed converter for moduli set {2n-1, ...
متن کاملUsing both Binary and Residue Representations for Achieving Fast Converters in RNS
In this paper, a new method is introduced for improving the efficiency of the Residue Number System, which uses both binary and residue representations in order to represent a number. A residue number system uses the remainder of the division in several different modules. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers greatly increase the speed of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999